Morphology changes in the evolution of liquid two-layer films.

نویسندگان

  • Andrey Pototsky
  • Michael Bestehorn
  • Domnic Merkt
  • Uwe Thiele
چکیده

We consider a thin film consisting of two layers of immiscible liquids on a solid horizontal (heated) substrate. Both the free liquid-liquid and the liquid-gas interface of such a bilayer liquid film may be unstable due to effective molecular interactions relevant for ultrathin layers below 100-nm thickness, or due to temperature-gradient-caused Marangoni flows in the heated case. Using a long-wave approximation, we derive coupled evolution equations for the interface profiles for the general nonisothermal situation allowing for slip at the substrate. Linear and nonlinear analyses of the short- and long-time film evolution are performed for isothermal ultrathin layers, taking into account destabilizing long-range and stabilizing short-range molecular interactions. It is shown that the initial instability can be of a varicose, zigzag, or mixed type. However, in the nonlinear stage of the evolution the mode type, and therefore the pattern morphology, can change via switching between two different branches of stationary solutions or via coarsening along a single branch.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process

Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...

متن کامل

On the Investigation of Sol-Gel TiO2 Nanostructured Films Applied on Windshields Pre-Coated with SiO2 Layer by Dip-Coating Method

TiO2-SiO2 photocatalytic nanostructure film on windshield for self-cleaning purposes was prepared via sol–gel dip-coating method. TiO2 films were prepared on automotive glass pre-coated with a SiO2 layer by a dip-coating method followed by annealing at 500 °C for 30min. The films were characterized using X-ray diffraction XRD and scanning electron microscopy SEM, FE-SEM techniques. The TiO2-SiO...

متن کامل

Enhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates

Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...

متن کامل

Electric-field-induced interfacial instabilities and morphologies of thin viscous and elastic bilayers.

Electric-field-induced instabilities in thin bilayers composed of either purely viscous or purely elastic films resting on a solid substrate are studied. In contrast to the electric-field-induced instability in a single elastic film, the length scale of the instability for elastic bilayers can be tuned by changing the ratios of the shear moduli, thicknesses, and dielectric permittivities of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 122 22  شماره 

صفحات  -

تاریخ انتشار 2005